Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation.

نویسندگان

  • Wei Xie
  • Lei Wang
  • Qian Dai
  • Hua Yu
  • Xiaomei He
  • Junzhi Xiong
  • Halei Sheng
  • Di Zhang
  • Rong Xin
  • Yajuan Qi
  • Fuquan Hu
  • Shaodong Guo
  • Kebin Zhang
چکیده

Coxsackievirus B3 (CVB3) is the major pathogen of human viral myocarditis. CVB3 has been found to manipulate and modify the cellular lipid metabolism for viral replication. The cellular AMP-activated protein kinase (AMPK) is a key regulator of multiple metabolic pathways, including lipid metabolism. Here we explore the potential roles AMPK plays in CVB3 infection. We found that AMPK is activated by the viral replication during CVB3 infection in Hela cells and primary myocardial cells. RNA interference mediated inhibition of AMPK could increase the CVB3 replication in cells, indicating that AMPK contributed to restricting the viral replication. Next, we showed that CVB3 replication could be inhibited by several different pharmacological AMPK activators including metformin, A769662 and AICAR. And the constitutively active AMPK mutant (CA-AMPK) could also inhibit the CVB3 replication. Furthermore, we found that CVB3 infection increased the cellular lipid levels and showed that the AMPK agonist AICAR both restricted CVB3 replication and reduced lipid accumulation through inhibiting the lipid synthesis associated gene expression. We further found that CVB3 infection would also induce AMPK activated in vivo. The AMPK agonist metformin, which has been widely used in diabetes therapy, could decrease the viral replication and further protect the mice from myocardial histological and functional changes in CVB3 induced myocarditis, and improve the survival rate of infected mice. Lastly, it was demonstrated that the AICAR-mediated restriction of viral replication could be rescued partially by exogenous palmitate, the first product of fatty acid biosynthesis, demonstrating that AMPK activation restricted CVB3 infection through its inhibition of lipid synthesis. Taken together, these data in the present study suggest a model in which AMPK is activated by CVB3 infection and restricts viral replication by inhibiting the cellular lipid accumulation, and inform a potential novel therapeutic strategy for CVB3-associated diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Activation and Inhibition of Cellular PKR on Coxsackievirus B3 Replication

The ds-RNA activated protein kinase (PKR) is a serine-threonine kinase with MW of 68 KDa. It belongs to a family of kinases that control one of the translational initiation factors, eIF2. PKR is produced at high level in response to viral infection. This protein by phosphorylating eIF2 inhibits cellular protein synthesis. In this study, the effect of gamma interferon (IFN-γ), an activator, and ...

متن کامل

Coxsackievirus B3 protease 3C induces cell death in eukaryotic cells

Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...

متن کامل

AMP-Activated Kinase Restricts Rift Valley Fever Virus Infection by Inhibiting Fatty Acid Synthesis

The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulato...

متن کامل

Autophagosome supports coxsackievirus B3 replication in host cells.

Recent studies suggest a possible takeover of host antimicrobial autophagy machinery by positive-stranded RNA viruses to facilitate their own replication. In the present study, we investigated the role of autophagy in coxsackievirus replication. Coxsackievirus B3 (CVB3), a picornavirus associated with viral myocarditis, causes pronounced intracellular membrane reorganization after infection. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular and cellular cardiology

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2015